
~
“ A D.A042 507 STAWORO t*41V CALIF DEPT cc COMPUTER SCIENCE F~~ 9/2

IS ‘SCCTIPC’ SOMETIMES BETTER THAN ‘ALWAYS ’ • INTERMITTENT ASSE—ETC(U)
Afl 77 Z MA*1A, P WALDINGER NøOOfl eYb CeOS$7

(MCLASSIFIED 5TAN~ C 76e55& REV *1. I
alL

_ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ENJD
DAlE

L E D

8 —77 I

II

I O ~ 111125
I.

~ll~i _____________

I ~
IIII~°

I
~llO

L8

11111’ .25

~fffj .4~ IIH~
MICR)~ ()PY RCSOLUT KJN TE S CHP~~1

N.: NN B1]R~ A &I or ,:~ r~L 1 rN

H

,

) .

. .

Stanford Artificial Intelligence Laboratory \ .~~‘ June 1976
~~ iu~~ Memo AIM-281.1 revIsed March 1977

~~~ 
Computer Science Department
Report No. STAN-CS-76-668 - .

~~~ Is ~‘sometime somet imes better than always”?
Intermittent assertions in provin g

program correctness

b y

Zohar Manna Richard Waldinger
Artificial Intelligence Lab Artificial Inte lligence Center
Stanford Universit y Stanford Research Institute
Stanford, Ca. Menlo Park , Ca.

Research sponsored by

Advanced Research Projects Agency . S

National Science Foundation I ~ (i
and

Office of Naval Research

COMPUTER SCIENCE DEPARTMENT ~
- Stanford University

C-,
Li_i -

L*...
~I

/
~~~
~~

-. 
~ . /‘

~~

~ 

M�~~~. 
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1_ , 

____



Stanford Artificial Inte lligence Laboratory June 1976
Memo AIM-281.1 revised March 1977

Computer Science Department
Report No. STAN-CS-76-558

Is “sometime ” sometimes better than “always ”?
-
‘ 

Intermittent assertions in proving
program correctness

by

Zohar Manna Richard Wald inger
A rtificial Intelligence Lab Artificial Intelligence Center
Stanford Universit y Stanford Research Institute
Stanford , Ca. Menlo Park , Ca.

ABSTRACT

This paper explores a technique for proving the correctness and termination of programs
simultaneously. This approach , which we call the intermittent-assertion method , involves
documenting the program with assertions that must be true at some time when control passes
through the corres ponding point, but that need iiot be true ever y time. The method, introduced
by Burstall, promises to provide a valuable complement to the more conventional methods.

We f irst introduce the intermittent-assertion method with a number of exam ples of correctness
and termination proofs. Some of these proofs are markedly simpler than their convetional
counter parts. On the other hand, we show that a proof of correctness or termination by any of
the conventional techniques can be rephrased directly as a proof using intermittent assertions.
Finally, we show how the intermittent assertion method can be app lied to prove the validity of
program transformations and the correctness of continuously operating programs.

This is a revised and simplified version of a previous paper with the same title (AIM-28 l, June
19 76).

This research was supported in part by the Advanced Research Projects Agency under Contract
Mt)A903 - 76-C -0206 , by the National Science Foundation under Grant GJ -9 6046 , by the Office of
Naval Research under Contracts N000) 4-? 6- C-063? and N00014- 75-C-0816 , and by a grant from
the United States-Israel Binationa l Science Found ation (BSF), J erusalem , Israel. The United
States Government has at least a royalty-f ree , non-exclusive and irrevocable license throu g hout the
world for  Government purposes to p ublis h , translate , rep roduce , deliver , perform , dispose of ,  and to
authorize others so to do, all or any portion of this work.

The views and conclusions contained in this document are those of the author (s) and should not be

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

interpreted as necessarily rep resenting the official policies , either expressed or Imp lied , of S tanford
University or any agency of the U. S. Government.

Reproduced in Me U.S.A. Available from the National Technical information Service , Spri ngfield ,
- Virgin ia 22161.

1.. .

~iiI - -.1- ~~~~~~~~~~~~~~~~~~
.~.i,: ~~~~. ~~~~~ - ,-~~~~ -

-
~~

.

-- ~~~~~~~~~~~~~~~~~~~~~~~~ -~ -~~~~~~~~~~~~

Manna & Wald inger

Table of Content .

I. Introduction

II. The IntermIttent—Assertion Method : Examp les
1. Counting the tips of a tree
2. The Ackermann function
3. The greatest common divisor of two numbers

III. Relation to Conventional Proof Techniques
I. Invariant—assertion method
2. Subgoal-assertion method
3. Well-founded ordering method

IV. A pplication: Validity of Transformations that Eliminate Recursion

V. Application: Correctness of Continuously Operating Programs

VI. Conclusions

V II. References

• SeC °” %
it

~~~~~~~

~

- -

~ 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

——- -- — - - -~~~~

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Manna & Waldlng.r

I. Int r oduction

The most prevalent approach to prove that a program satisfies a given property has been the
in variant—assertion method , made known largely through the work of Floyd (196 7] and Hoare
[1969). In this method, the program being studied is supplied with formal documentation in
the form of comments, called invariant asser tions , which ex press relationships between the
different variables manipulated by the program. Such an Invariant assertion is attached to a
given point in the program with the understanding that the assertion is to hold every time
control passes through the point.

Assuming that an appropriate invariant assertion , called the I n put specification , holds at the
start of the program, the method allows us to prove that the other invariant assertions hold at
the corresponding points in the program. In particular , we can prove that the output
specif ication the assertion associated with the program’s exit, will hold whenever control
reaches the exit. If this output specification reflects what the program is intended to achieve,
we have succeeded in proving the correctness of the program.

It is in fact possible to prove that an invariant assertion holds at some point even though
control never reac hes that point, since then the assertion holds vacuously every time control
passes through the point in question. In particular , using the Invariant—assertion method, one

might prove that an output specification holds at the exit even though control never reaches
that exit. If we manage to prove that a program’s output specification holds, but neglect to show
that the program terminates , we are said to have proved the program’s partial correctness.

A separate proof, by a different method, is required to prove that the program does terminate.
Typically, a termination proof is conducted by choosing a well-fo unded Set , one whose elements
are ordered In such a way that no infinite decreasing sequences of elements exist. (The

• nonnegative integers under the regular greater—than ordering, for example, constitute a
well—founded Set.) For some designated label within each lOOp of the program an expression

• Involving the variables of the program is then selected whose value always belongs to the
we ll—founded set. These expressions must be chosen so that each time control passes from one
designated loop label to the next , the va lue of the expression corresponding to the second label
is smaller than the va lue of the expression corresponding to the first label. Here, “smaller ”
means with respect to the well-founded ordering, the ordering of the chosen well—founded set.
This establishes termination of the program, because if there were an Infinite computation of
the program, control would traverse an infinite sequence of designated loop labels; the
successive values of the corresponding expressions would constitute an infinite decreasing

• sequence of elements of the well-founded set, thereby contradicting the defining property of the
set. This well-founded ordering method constitutes the conventional way of proving the
termination of a program (Floyd [1967)).

2

~~~~~~~~~~~~~~~~~ 1~L ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - •~~~~ ~ • A


• • • -~~~ — -----
~~

• -.--—

Manna & WaldIng.r

If a program both terminates and satisfies its output specification, that program Is said to be
totally correct .

Burstall (1974] Introduced a method whereby the total correctness of a program can be shown
in a single proof. The approach had been applied to specific programs earlier, by Knuth
([1968) Section 2.3.1) and others. This technique again involves affixing comments to points in
the program but with the intention that sometime control will pass through the point and
satisf y the attached assertion. Consequently. control may pass through a point many times
without satisf ying the assertion, but control must pass through the point at least once with the
assertion satisfied; therefore we call these comments intermettent assertions. If we prove the
output specification as an intermittent assertion at the program’s exit, we have simultaneously
shown that the program must halt and satisfy the specification. This establishes the program’s
total correctness. Since the conventional approach requires two separate proofs to establish total
correctness, the intermittent—assertion method invites further attention.

We will use the phrase

sometime U at L

to denote that U is an intermittent assertion at label L, i.e. that sometime control will pass

• through L with assertion 0 satisfied. (Similarly, we could use the phrase “always U at L” to
indicate that 0 is an invariant assertion at L.) It’ the entrance of a program is labelled start and
its exit Is labelled f inish , we can express its total correctness with respect to an Input
specification P and an output specification R by

Theorem: If sometime P at start
then sometime R at finish.

This theorem entails the termination as well as the partial correctness of the program, because it

implies that control must eventually reach the program’s exit , and satisfy the desired output
specification.

•
. If we are only interested in whether the program terminates, but don’t care If it satisfies any

particular output specification, we can tr y to prove

• Theorem: if sometime P at start
then sometime at fi nish.

The conclusion “sometime at finish ” expresses that control must eventually reach the program’s
exit , but does not require that any relation be satisfied. (It could have been written as

• “sometime true at f inish ”, because the assertion true always holds.)

1 •

:

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _  

~~~ ••~~~- - - • • •~~~~~ - •--

~~~
------ -• • • --•-• • .

~~~ ____________

Manna & Wald lnger

General ly, to prove the total correctness or termination theorem for a program, we must affix
Intermittent assertions to some of the program’s internal points, and supply lemmas to relate
these assertions. The proofs of the lemmas often involve comp lete induction over a well—founded
ordering (see Manna [1974]). In proving such a lemma we assume that the lemma holds for all
elements of the well—founded set smaller (in the ordering) than a given element , and show that
the lemma then holds for the given element as well.

The lntermittent—assertion method has begun to attract a good deal of attention. Different
approaches to Its formalization have been attempted , using predicate calculus (Schwarz [1976)),
Hoare—sty le axiomatization (Wang [1976]), modal logic (Pratt [1976]), and the Lucid formalism
(Ashcroft [1976)). Topor [1977] applied the method to proving the correctness of the
Schorr—Waite algorithm, a complicated garbage-collecting scheme.

In this paper, we first present and illustrate the intermittent—assertion method with a variety of
examples for proving correctness and terminat ion. Some of these proofs are markedly simpler
than their conventional counterparts . On the other hand, we prove that the
Intermittent —assertion method is at least as powerful as the conventional Invariant—assert ion
method and the well-founded ordering method, in addition to the more recent
subgoal—assertion method (Manna [1971), Morris and Wegbreit (1976)) for proving partial

• correctness. Finally, we show that the intermittent-assertion method can also be applied to
establish the validity of program transformations , and to prove the correctness of continuously
operating programs, programs that are intended never to terminate.

4

--

-

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ — 
• 

. . _ _ _ _ _ _



Manna & Weld inger

II. The Intermittent- Assertion Method: Examp les

Rather than present a formal definition of the intermittent—assertion method we prefer to
illuminate it by means of a sequence of examp les. Each example has been selected to Illustrate
a different aspect of the method.

1. Counting the tips of a tree

Let us consider a simple program as a vehicle for demonstrating the basic technique. This is
an algorithm to count the tips of a binary tree, those nodes that have no descendents. A
recursive definition of a function t ip s (t ree) that counts the tips of a binary tree tree Is

tip s(tr ee) <— If  tree is a t ip
then I
else tips (left (tree)) + t ip s(rig ht( tree)),

w here left (tree) and righ t (tree) are the left and right subtrees of tree respectively.

• An iterative program to count the t~~s of a binar y tree tree is

• input (tree)
start: stack ~ (tree)

count ÷- O
more: If stack .

• then finish: outp u t (count)
else If head (s tack) is a tip

then count ~ count + i
stack ~- ta il (st ac k)
goto more

else f i r s t  ~ head (stack)
stack .- lef: (firs t) . [ ri g ht (f irs t) . ta il (stac k))
goto more.

This program is similar to one used by Burstall in his [1974] paper.) We have used the
notation 0 to denote the empty list , (r) to denote the list whose sole element is x, and x. I to
denote the list formed by adding the element r at the beginning of the list 1. (Note that (x) is
the same as x• 0.) lIthe list I is not empty, then head (l) is its first element and tail (l) is the list
of its remaining elements. The indentation of the program indicates that if head (stack) Is a tip,
all three instructions following then are to be executed; otherwise, all three instructions
following else are to be executed .

5

~~~ ~i•~r~_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- — - - -



—— .~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•~ —~~ • =-.-•- ••.

~~
-.

Manna & Waldinger

This program initially Inserts the given tree as the single element of the stack . At each
iteration, the first element is removed from the stack. If it is a tip, the element is counted ;
otherwise, Its left and right subtrees are inserted as the first and second elements of the stack.
The process terminates when the stack is empty; count is then the number of tips in the given
tree.

Using intermittent assertions , we can ex press the total correctness of this program by the
following theorem

Theorem: if sometime tree = t at start
then sometime count — t ips ( t )  at f inish.

This theorem states the termination of the program in addition to Its partial correctness ,
because it implies that control must eventually reach the program’s exit , and satisf y the

• appropriate output specification.

In order to apply the intermittent-assertion method , we supply a lemma to describe the
behavior of the program’s loop. In this case correctness of the program depends on the
following property: if we enter the loop with some element t at the head of the stack , then
eventua lly the tips o f t  will be counted and t will be removed from the stack. (Note that we may
need to return to more many times before the tips of t are counted.) This property Is expressed
more precisely by the following lemma:

Lemma: if sometime count c and stack — t ’s  at more
then sometime count — c + t ip s ( t )  and stack — s at more.

• The hypothesis count — c in the antecedent allows us to refer to the original value of count in
the consequent, even though the value may have changed subsequently.

It is not difficult to see that this lemma implies the theorem. Suppose

sometime tree — t at start.

Then, following the computation specified by the program, we set stack to (t) , count to 0, and

reach more, so that

sometime count — 0 and stack — (t) — t . ( )  at more.

The lemma then tells us, takin g c to be 0 and s to be 0, that

sometime count — 0 + t ip s ( t)  and sta ck = 0 at more.

6

p - . -
. 

-



______

Manna & Wa ldinger

Because we are at more with stack-0, the computation proceeds to finish , so that

sometime count — t ips ( t)  at f in ish,

and the theorem is thereby established.

The proof of the lemma is by complete induction on the structure of t. In other words, we

suppose the antecedent of the lemma , that

sometime count — c and stack - 1. s at more ,

and we assume inductive ly that the lemma holds whenever count — c’ and stack — t ’.s ’, where t’
is any subtree of t. We will then show the consequent of the lemma, that

sometime count — c + t ips ( t )  and stack — s at more.

The proof distinguishes between two cases , depending on whether or not ( is a tip.

Case t Is a tip: Then t ips ( t)  = I by the recursive definitior~ of tips. Since stack — t. s, it is
clearly not empty, but its head, , is a tip. The program therefore increases count by 1 and
removes t from the stack. Thus,

sometime count = c + I — c + t ips ( t )  and stack s at more,

establishing the conclusion of t~e lemma in this case .

Case t Is not a t ip .  Then t ip s ( t )  — : ip s (l cfz (t) )  + :ip s (r ig ht (t)),  by the recursive definition of
t ips.  Since is not a tip, we pass around the else branch of the loop this time: we remove t

from the stack , break it down into its left and right subtrees, replace these on the stack as Its
first and second elements, and return to more. Thus,

sometime count — c and stack — left (t) ’ [ rig ht(t) ’ s] at more

• We can then apply the induction hypothesis [taking c’ to be c, t’ to be I ef t ( t)  and s’ to be
right (t).  s), since l eft (t)  is a subtree of t. The induction hypothesis tells us that

sometime count — c + t ip s ( I e f t ( t ) )  and stack — rig ht (t) ’ s at more.

Since rig h t (t)  is also a subtree of t , we can apply the induction hypothesis again [taking c’ to be
c +tips (tef (t)) ,  t’ to be rig lu(t) and s ’ to be s] , yielding

sometime count — c + t ip s (lef t (e))  + : ips (r ig h t ( t ) )  and stack — s at more.

‘7 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
-
~~4~L! t.~p

- -- •. - -
~ ~~~ ~~~ •!~

rI
~~~~~:~~

. .i:~ ~~~~~~~~~~~~~~~



Man na & Wald inger

In other words , since t ips (t )  — t ips (left ( t))  + t ips (r ig ht(t)) ,

sometime count = c + t ip s ( t)  and stack — s at more.

This Is the desired conclusion of the lemma.

Note that once the lemma was formulated and the basis for the inductIon decided, the proofs
proceeded In a fairly mechanical manner. On the other hand, choosing the lemma and the
basis for induction required some ingenuity.

-
s The proof of the lemma called upon the full power of the intermittent—assertion method .

Although the recursive program that defines the tips function can count the tips of a subtree
with a single recursive call, the iterative program may require many traversals of the loop
before the tips of a subtree are counted. The intermittent—assertion method allows us to relate
t he point at which we are about to count the tips of a subtree t with the point at which we
have completed the counting, and to consider the many executions of the body of the loop
between these points as a single unit , which corres ponds naturally to a single recursive call of
t ip s (t) .

The conventional invarian t—asser tion method , on the other hand, requires that we identify a
condition that allows us to relate the situation before and after each single execution of the
body of the loop. There may be no natural connection between these two points; consequently
our InvarIant—assert ion must be exceptionally complete. In this case, such an assertion Is

t ip s (tree) — count + ~~ t ips (s)  at more,
s stack

where t ips (s )  is the sum of the t ips of all the elements of the stack (cf. London
s ( s t a c k

[ 19 75)). Once we know this assertion , the invariant—assertion proof is also straightforward.
However , to formulate the above assert ion we are required to relate all the elements of the

• stack , while to understand the program or to produce the intermittent—assertIon proof we only
needed to consider the first element of the stack .

The intermittent—asser tion proof established termination at the same time as correctness ; to
prove termination by the conventional well-founded ordering approach, we can show that the
va lue of the pair

t ips (tree ) — count t ips (head (st ack))  )

alwa ys decreases in the lexicograp hic ordering each time we return to more. In other words.
either the first component : ip s(tree ) — count is reduced, or the first component remains fixed

8

Ia :h 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 


-
•. .:.: -

~~~~~~ 
—

~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
_-

~
--

~~~~~~~~~~ 
-

Manna & Waldinger

and the second component t ip s (head(stack))  is reduced . Both components remain nonnegative
at all times. Although finding the above pair requires a bit of ingenuity, this termination proof
is relatively straightforward. In the next section we will see a program for which the simplest

• known conventional termination proof is significantly more complicated than the

• tntermittent— a~sertion proof of total correctness.

2, The Ackermann Function

The Ackermann function, denoted by A (~ y), is defined recursively for nonnegative lnteg~rs x
and y as

A(x y) <= I f x = 0
• then y+ l

else if y = 0
then A(x- I 1)
else A(x- l A(x y- I )).

For example, A(I I) — A (O A( l  0)) - A(O MO I)) - A(O ,2) — 3.

This function is of theoretical interest , in part because its value grows extremely quickly; for
instance,

22222

A(4 4) — 22 -3

An Iterative program to compute the same function is

9

LI. ~~~~ ~~~~~~~~~~ ~~~~~~~~~

-

~~~~~~~~

--‘

~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _

_ _

-.---

Manna & Wald ing.r

Input(x0 yo)
start: s t ac k (l) ~—

st ack[2)
index ~ 2

more: If index — I
then finish: out put (st ac k[I])
else If s t a c k[inde x —I] 0

then s tac k (ind ex- I) ~ st ac k[index] + I
index ~ index- I

-
‘ goto more

else if sta ck[indexJ - 0
then stac kt index-1J ~- s t a ck[index —l) — l

stac k[index) ~- 1
goto more

else s t ac kf inde x+I) ~ st ac k[index) — l
s tack [in dex] ~— sz ac k[index— I]
stac k[index- 1] ~- s tac k[index -l) — I
index~~ index+ 1
goto more.

This iterative program represents a direct translation of the recursive definition. If at some
stage the recursive program is computing

A(s o A(s , ... A(s 1_

then at the corresponding stage of the iterative computation

stack — (S~ s 1 ... 5i~ I s~) and index — 1.

Using Intermittent assertions, we can express the program’s total correctness by the

Theorem: if sometime x0,y0 > 0 at start
then sometime s t ac k[1] = A(x0 yo) at finish .

In proving this theorem we will employ the following lemma,

Lemma : I f sometime I ndex — I , i � 2, stac k[l:1—2] —

s t a c k [i — I] = a and s tackti] = b at more,
then sometime index — i-I, s i a c k[I : i—2) — s

and s t a c k[i - l] — A(a ii) at more.

10

r • •

~~~~~~~

-,.---—
--

—

Manna & Waldinger

Here , s represents a tuple of stack elements. The abbreviation s tac k[ I  : 1—2] = s will be used to
denote that s equals the tuple of elements (s t a c k [ I ]  s tack [ 2) ... stack[1—2]); this expression is
included in the hypothesis and the conclusion of the lemma to convey that the initial segment
of the arra y, the first 1— 2 elements , are unchanged when we return to more.

It is straightforward to see that the lemma imp lies the theorem. For index is 2, s t a ck[ l)  is x0,

and s tac k(2) is Yo the first time we reach more. Then the lemma implies that eventually we will
reach more again, with index— I and stack [ I] - A(x 0 yo). Since Index • I we then pass to f inish
wit h the desired output.

To prove the lemma let us suppose

sometime index — i , I � 2, s t ack [ I : i—2)  -

s t ac k t i —l)  — a and stack [ i)  — b at more.

Our proof will be by induction on the pair (s tac k (inde x—l) s tac k(index] ) under the
• lexicogra phic ordering over the nonnegative integers; in other words, we will assume the lemma

holds whenever s t ack [ i nd ex-I)  = a ’ and s tack [ index) = b’, where a’ and b’ are any nonnegative
integers such that a’ < a, or such that a’ a and b’ < b, and show that it then holds when
s t ack [ inde x— I j = a and s tack [ indexi =b , i.e.

sometime inde x — i- I , s tack [ l  i— 2] =s , and
stac k[ i— I )=A (a b) at more.

The proof distinguishes between three cases , corres ponding to the conditional tests in the
recursive definition of the Ackermann function.

Case a - 0: Then A(a b) b+l by the recursive definition of the Ackermann function. But
since index — I , and sl ac k[ inde x - 1)  — a = 0, we return to more with Index — i — I  and

• s t ack [ i— I )  ~
- b+ I , satisf ying the conclusion of the lemma.

Case a > 0, b - 0: Here , A(a b) - A(a-I I) by the definition of the Ackermann function.
Because index — I , s t ac k ( in d ex - I)  = a ~ 0 and st ack [ index) = b — 0, we return to more with
index — i , s t a c k [ i — l)  — a-I , and st ac k[ i)  — I . Since sca c k[ i—l)  — a — I  <a , we have

(st ac k[ i— 1) s ta ck[ i) ) = (a—I 1) < (a 0),

and , therefore , the inductive hypothesis can be applied [taking a’ to be a— I and b’ to be I], to
yield that

sometime index — i-I, st ac k [ I : i -2 ]  = s and
s t a c k [ i — I ]  — A ( a — l I )  at more.

II



— 

~~~~~~~~~~~ 
— • — —

~~
-— —-

~~
—--- — • • •. _ • . . ~~~~~~~

.______ _J——-,--—--- • — - •

Manna & Waid inger

Because A(a b) — A(a— I I), the lemma is established in this case.

Case a > 0, b > Os Then A(a b) - Ma- I A(a b-I)), by the recursive definition. Since
Index — I , st a ck[lndex— I) — a — 0, and st ac k[index) — b — 0, we return to more with

I ndex — t+I ,
s t ac k[i—l) — a— I ,
sta ck[i] = a , and
s tack [i÷I] — b — I .

Because index — 1+1 and (stac k[i) stack [i+ l)) - (a b — I) < (a b), our induction hypothesis applies

(taking a’ to be a and b’ to be b— I] , yielding

sometime index — I, s tac k [I : i—2] — 5,

s tack l i—l) a — I , and s tack [i) — A(a b — I) at more.

• Note that we could conclude that stack[i-l1 - a-I because the induction hypothesis, for

index — 1+1, states that the first i— I array elements are unchanged.

Because index — i and (s t ac k [i - I] s t a ck[iJ) = (a- I A(a b — I)) < (a b), we can apply the induction
• hypothesis once more [taking a’ to be a- I and b’ to be A(a b—I)), to obtain that

- sometime index — i — i , s tac k[l:i= 2) =

and s ta ck [1—I] — A(a.- I A(a b— I)) at more,

which Is the desired conclusion in this case.

•

- This completes the intermittent—assertio n proof of the total correctness of the Ackermann
• program; we believe it reflects our understanding of the way the program works. The

invariant—assert ion proof of the partial correctness is quite natural; at each iteration It can be
• shown that

A (stack (l] A (stack [2) ... A (sta ck (inde x—I] sta ck[index]) ...)) • A(x~,y~)

• at more and , when the program terminates, that

s t a c k (I) - A (x0 y 0) .

On the other hand , the known proofs of the termination of th.s iterative program using the
conventional well—founded ordering method are extremely cc - ilicated, and we challenge the

- Intrepid reader to construct such a proof.

12

Ia ~~~~~~~~~~~~~~~~~ ~~~~~~~~-~i- ’•.~~ -~~~ -- . - --. -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Manna & Wald ing.r

3. The great est common divisor of two numbers

In the previous two examples, we have applied the intermittent—assertion method to programs

involving only one 1oop. The followrng program, which computes the greatest comm on divisor
(g cd) of two positive integers, is introduced to show how the intermittent—assert lon method Is

applied to a program with a more comp lex ioop structure .

We de f ine gcd (x y), where x and y are positive integers, as the greatest integer that divides both

x and y, t hat is ,

-
‘ gcd(x y) .m a x ( u : u IX a n d U~Y1.

For instance, gcd( 9 12) — 3 and gcd (12 25) = I.

• The program is

input(x y)
start:
more: if x — y

then finish: output(y)
else reducer: if r > y

the n x ~~x-y
goto reducer

reducey: if y > x
then y . - y-x

goto redu cey
goto more.

This program is motivated by the following properties of the gcd:

gcd (x y ) - y  i f x = y .
• 

. • 
gcd (x y)  — gcd (x-y y)  if x > y ,  and
gcd(r y) —g c d (x y -x)  i f y > x .

We wou ld like to use th e intermittent-as sertion method to prove the total correctness of the this
program. The total correctness can be expressed as follows:

Theorem: if sometime x — a , y - b and a ,b > 0 at start
then sometime y — gcd( a b) at f inish.

To prove this theorem, we need a lemma that describes the internal behavior of the program.

• •( ‘3



—~~~-——- - ——~ — ---- _----- —— — - - -. - --- —- -—---—~~---——- - ~~~~~~~~~~~~ • ~~~~~~~~~~~~

Manna & Waid lnger

Lemma: If sometim e x - a , y - b, and a > b >  0 at reducex
or sometime x = a, y - b, and b > a > 0 at reduce,

then sometime y — gcd(o b) at f inish.

To show that the lemma Implies the theorem, we assume that

sometime x — a, y - b, and a ,b > 0 at start.

We must distinguish between three cases.

Case a — b: Control passes directly to f inish. Thus

-. 
sometime y — b at finis h.

But because in this case b — gcd (a b), by a given property of the gcd , we have y — gcd(a b) at

f inish.

Case a > b: Control passes directly to reduce r , so

sometime x — a , y — b, and a > b >  0 at reduce r .

The lemma then asser ts that

sometime , = gcd (a b) at finish.

Case b > a: Here, control passes directly to reducey , so that

sometime x — a , y - b and b >  a. > 0 at reducey.

Again, the lemma yields the desired result.

The proof of the lemma proceeds by induction on a+b. We suppo se

sometime x — a , y — b, and a > b >  0 at reducer
or somet imex = a , y = b , a n d b > a > O a t redUcey.

W e assume inductively tha t the lemma holds whenever x — a’ and y — b’, where a’ + b’ < a + b,
and show that

sometime y — gcd(a b) at finish.

The hypothesis of the lemma Is a disjunction of two possibilities. We consider each possibility
separately.

- . 14

Ia. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



-.

Manna & Waid ingsr

First , sup pose

sometime x — a, y - b, and a > b >  0 at reducer.

Here control passes around the top inner loop, so that

sometime x — a—b and y - b at reducer.

For simplicity~ let us denote a—b and b by a’ and b’, respectively. Note that

a’, b’ > O
a’ +b ’ < a + b , and
gcd (a’ b’) — gcd (a—b b) = g cd(a b).

This last condit ion follo ws by a given property of the gcd. We now distinguish between three

cases.

Case a’ — Li’: Contro l passes directly to finis h. so

sometime y — gcd (a’ I”) - gcd (a b) at finis h.

Case & , b’: Here

- 

- sometime x = a’, y - b’, and a’ ’ b’ > 0 at reducer .

Because a’ + b’ <a + b, we can apply the induction hypothesis to deduce that

sometime y — gc d(a ’ b ’) - g cd(a b) at f in ish .

Case b’ > a’: Contro l passes to reducey and we can apply the induction hypothesis in the same

wa y.

The second poss ibility from th e hypoth esis of th e lemma , that

4 
son~ettme x — a , y.  b, and b,  a>  0 at reduce,,

is dIs posed of In a symmetric manner. This completes the proof of the total correctness of the

gcd .

It is not difficult to prove the partial correctness of the above program using the conventional

Invariant—assertion method. For instance, to prove that the program Is part ially cor rect wit h

respect to the input specification

15

~~~~~~~~~~~~~~~~~ 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----
--.

-
~~~~~~~~~~~~~~~~~~~~~~~ . - - •-• ~~~- ~~~~~~~~ - _ - _ . -  ~~~~~~ - - — —  

~~~~
— ---— -—- -————

Manna & Waldinger

x0 > 0 and yo > 0

and out put specification

y - gcd(x~ y o)

(where x0 and Yo are the initial values of r and y) we can use the same invariant assertion

x,y > 0 and gcd (x y) - gcd (x0 y o)

at eac h of the labels more, reducer and reducey.

In contrast , the termination of this program is awkward to prove by the conventional
well—founded ordering method, because it is possible to pass from more to reducer , reducer to
red ucey, or from reduce, to more without changing any of the program variables. One of the
simplest proofs of the termination of the gcd program by this method involves taking the
well—founded set to be the pairs of nonnegative integers ordered by the regular lexicographic
ordering. When the expressions corresponding to the loop labels are taken to be

(x+y 2) at more ,
if x — y then (x+y I) else (x+y 4) at reducer , and
if x <y then (x+y 0) else (x+y 3) at reducey,

it can be shown that their successive values decrease as control passes from one loop label to the
next (Katz and Manna [1975)). Although this method is effective, It Is not the most natural in
establishing the termination of the gcd program.

16

~

~~~~ - 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ._ . _ . —,


F — --— _-
~~~~~~~ 

-
~~~~~~~- -

Manna & Wald inger

III. Relation to Conventional Proof Techni ques

One question that naturally arises in presenting a new proof technique is Its relationship to the
more conventional methods. In the previous section we have seen examp les of

intermittent—ass ertion proofs of correc tness and termination that are simpler than any known
conventional counter parts. In this section we wi ll show that the reverse is never the case; in
fact , we can directly rephrase any partial—correctness proof using the invariant—assert ion
method as an intermittent—assertion proof. The same result applies to another standard
partial—cor rectness proof technique, the “subgoal assertion method”. Furthermore, we will show
that any termination proof using the well-founded ordering method can also be expressed
using intermittent assertions instead. Therefore, we can always use the intermittent—assertion
method in place of the established techniques .

To characterize the conventional techniques precisely, we find it convenient to introduce some
new notations, w hich are described more fully in Manna [1974). Let x be a comp lete list of the
variab les of a given program, and let x0 denote their initial values. Suppose that we have

designated a special set of labels L0, L~, ..., Lh, where L0 and Lft are the program’s entrance

(s tar t) and exit (finish) respectivel y. It is assumed that each of the program’s loops passes
through at least one of the designated labels. A path between two designated labels is said to
be basic if it does not pass through any designated label (except at its endpoints). For each

• basic path a from label L~
to ~~ we let ç(x) denote the condition that must hold f or control to

pass from L~ along path a to Lj~ and we let g~(x) be the transformation of the values of x

effected in traversin g the path a. Thus, if x = a at L~
, and condition t~(a) holds, then control

will pass along path a , reaching L~ with r - g~(a).

We now define the ordering that will enable us to mimic conventional partial—correctness
proofs by the intermittent-assert ion method . Suppose that the program is intended to apply to
inputs satisfying the input specification P(r0). Then the orderin g >‘ induced by the computation
is defined as follows:

(a I) > (b j)

if control passes through L• with x = a and then eventually passes through Lj with x = b, for

some computation that initially satisfies the input specification P(x0) and that ultimately

terminates. This ordering is well—founded , because any infinite decreasing sequence in the
ordering would correspond to an infinite computation of the program, but we have only
defined the ordering for finite (terminating) computations.

Now let us see how the concepts we have introduced allow us to rephrase an

17

.:

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -___



- --- - - ~~~~~~~~~~~~ • . -~~~~~

Manna & Wald inger

InvarIant— asser t ion proof of the partial correctness of a program as an IntermIttent—assert ion
proof.

1. InvarIant-assertion method

Suppose that we have used the invariant—assertion technique to prove that a program is
partially correct with respect to some input specification P(x0) and output specification R(x0 x).

Then we have a set of Invariant assertions 00(x0 x), 0 1(r 0 x) , ..., Q~(x~ x) corresponding to the

designated labels L0, L1 Lh, for which we have proved that for every r0 and x :

( I )  P(r0) — > Clo(r 0 x0)

(the input specification Implies the initial invariant assertion), and

(2) f l h(r O x) => R(r 0 x)

(the final invariant assertion implies the output specification),

and, for each basic path a from L~ 
to Lj~ we have proved the verification condition

(3 0j ~ (x o x ) and ç~(r) => Ujfro g~(4)

(the invariant assertion before the path implies the invariant assertiot . after).

• Conditions (I) and (3d) establish that each Q~
(x o x) is indeed an Invariant assertion at Li; it has

the property that each time we pass through L4, Q~(x0 x) will be true for the current value of x.

Condition (2) then Implies that if the program terminates , the desired output specification will
be satisfied. Together, these conditions establish the partial correctness of our program.

From the given proof of the partial correctness of the program, we can extract an
• Intermittent—assertion proof of the same result. The theorem that expresses the partial

correctness In the intermittent—asserti on notation is as follows:

Theorem: if sometime r - x 0 and P(x 0) at start
and the computation terminates
then sometime R(x 0 x) at f inish.

This theorem ex presses the partial correctness of the program, because it inc ludes the explicit
assumption that the particular computation being considered terminates . Given the assertions

18

p ~~~~~~~~~~~ ~~~~~~~
--  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. -

~~

- • • - ___

Manna & Waldinger

O~(x0 x) from the invariant -assertion proof, we can construct the following lemma, which will
enable us to prove the partial-correctness theorem:

Lemma: f o r ever y i , 0 ~ I � h,
if sometime x - a , P(x 0) and Q

~
(x o a) at L1

and the computation terminates
then sometime R(r0 x) at f inish.

To prove that the lemma implies the theorem, assume

sometime x —x0 and P (r 0) at start
and the com putation terminates .

Our invariant-assertion proof includes a proof of (1), that P(x0) .> Oo(xo x0). That proof can
be incorporated here, to yield

sometime x — x0, P(xo) and Q0(x o r0) at L0
and the computation terminates ,

(because L0 is identical to start) . Taking i - 0 in the lemma, we may deduce

sometime R(x0 x) at finish ,

which Is the desired conclusion of the theorem.

To prove the lemma, we suppose

sometime x — a , P(x0) and Q~(x 0 a) at
and t he computation terminates ,

for some i between 0 and h. The proof is by induction on the ordering > induced by the
computation. Thus, we assume inductively that the lemma holds whenever x • a’ at L1., where

(a I) > (a ’ I’) .

The proof distinguishes between two cases .

I f I • h, we have supposed that

sometime x — a and U~(r 0 a) at Lh.

Incorporating the proof of (2) and recalling that Lh is f inish , we have

19

i ~~~
_ _ _ _ _ _ _ —-

Manna & Waldinger

sometime R(xo x) at f inish ,

which Is the desired conclusion of the lemma.

On the other hand, if 0 � i < h, contro l must follow some basic path a to a designated label L3.
For this path, ç(a) must be true, and x = g~(a) when control reaches Lj . Because Q1(xo a) and

t~ (a) are true, we can reproduce the proof of (3~) to deduce that Qj(x o g~(a)) is true. Thus

someti me x — g,3,(a) and Oj(x o g~(a)) at Lj .

Because x0 has been assumed to satisf y the input specification P(r0), and because the
computation has been assumed to terminate, we have that

(a i) > (g ~(a) j),

by the definition of the ordering induced by the computation , and therefore that

sometime R(r 0 x) at f inish ,

• by our induction hypothesis.

This completes the proof of the lemma.

We have thus constructed an intermittent—assertion proof of the partial correctness of the
program, assuming that we were given an invariant—assert Ion proof. In the next section we will
indicate how the same procedure can be applied to subgoal—assertion proofs.

2, Subgoal-assertIon method

The invariant—assertion approach always relates the current values of the program variables to
their Initial values. Another approach for proving partial correctness , the subgoal—assertion
method , relates these variables to their ultimate values when the program halts. We will first
present the method, and then show as before that if we have proved the partial correctness of a
program using this method, then we can rephrase the same proof with intermittent assertions
instead.

Suppose now that we have used the subgoal-assertion method to prove that a program is
• partially correct with respect to some input specification P(ro) and output specification R(x 0 x).

Then we have a set of subgoal assertions Qj(x x h), Q~(x xh), ~ Q~(x xh) corresponding to the

1• 20

p
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Manna & Waldinger

designated labels L0, L1 Lh, with the intuitive meaning that Q~x xh) must hold for the

current value of x as control passes through L1 and the ultimate value xh of x when the

computation halts. For these assertions we have proved that for every x0, x and xh:

( 1 *) Q
~(xñ Xh )

the final subgoal assertion always holds for the final value of x), and

(2*) P (x0) and U~(xo xh ) —> R (x0 xh)

(the input specification and the initial subgoal assertion imply the output
specification),

and, for each basic path a from L• to ~~ we have proved the verification condition

(~~) Q g ~(x)  xh) and ç(x) —> ~~~~~~ Xj ~) -

(the subgoal assertion after the path implies the subgoal assertion before).

The subgoal-assertion method works backward through the computation, whereas t he

invarIant—assertion method works forward. Condition (j *) implies that the final subgoal

assertion always holds. Conditions (S,~) sa y that if the appropriate subgoal assertion holds

when control reaches the end of a path , then the corresponding subgoal assertion holds when

control is at the beginning of the path. If the program does terminate, conditions ( 1*) and (3~)

imply that each Q~r xh) is indeed a subgoal assertion at L1; it has the property that each time

we pass through L~
, O~x xh) will be true for the current value of the program’s variables, x,

and its ultimate value, xh. Condition (2~) then implies that if the program terminates, the

desired output specification will be satisfied. Together, these conditions imply the partial
correctness of the given program.

To contrast the invariant—assertion and the subgoal—assertion method, let us consider a simple
program to compute the gcd:

2 1

a. ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 4



F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• • • • • •

Manna & Walding.r

Inp ut (x y)
start:
more: It x— O

then f inish: output(y)
else (r y) ~ (rem(y x) x)

goto more.

Here, rem(y x)  is the result of dividing y by x. The notation (x y) .- (rem(y x) r) means that the
values of x and y are simultaneously assigned to be rem (y x) and x, respectively.

To show that this program is partially correct with respect to the Input specification

P(r0 y0) :x 0 > O a n d y0 > 0 ,

and the output specification

R(x0y0 y) :y  - gcd (x 0 y 0) ,

we can employ the Invariant-assert ions

0scarc (’oYo xy )  P(r0 y0) : x0 > 0  and Yo > 0

0more(’o Yo X y ) :  x � 0 and y > 0 and gcd (x y) — gcd(x0 yo)

0f in lsh(’O Yo ~ y) k(x0 Yo; y) : y - gcd (~0 y o)~

On the other hand, to prove the same result by the subgoal-assertion method, we can use the
subgoal assertions

• 0~star t (x Y yh ) :  x � 0 and y > 0 — >  Yh = gcd(x y)

0~more (> y yf t ) : x � 0 and y > 0 => Yb - gcd(x y)

Q f i n i s h(X Y Yb) : y - Yb

The reader may observe that the invariant assertions relate the program variables x and y with
their initial va lues x0 and Yo and the subgoal assertions relate the programs variables with the
ultimate final value of ,, Yh~

22

“. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~~-‘- ~~~~~~~~~~~~~~~~~~~~~~~ 
.-• --—---— -- - - • - - •



— —- 
-
~ J~

_ -— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• —
~~

-‘:-
-

Manna & Waldinger

Let us return to the general case. From a given subgoal—assertion proof of the partial

• correctness of a program, we can mechanicall y paraphrase the argument as an
intermittent—assertion proof , just as we did for the invariant—assertio n method.

The theorem that expresses the partial correc tness of the program is again:

Theorem ; if sometime x - x0 and P(x 0) at start
and the computation term inates

• then sometime R(r0 x) at f in ish .

The lemma that we will use in proving the theorem, however , Is different from the lemma in

the Invariant—assertion case;

Lemma: for every i , 0 ~ I � h
if sometime x - a and P(x 0) at L~
and the computation terminates

then sometime Q~(a x) at f inish

To construct a proof that the lemma imp lies the theorem, we take I — 0 and extract the

just ification for Condition (2~’) from the given subgoal assertion proof.

The proof of the lemma is constructed in a way analogous to the earlier lnvariant—assertiofl

case. Induction is again based on the ordering > induced by the computation. When I — h we

use the proof of Condition (I~), and if 0 ~ I < h we use the inductive hypothesis and the proof

of (3,.~).

• We have remar ked that the invariant- assertion method relates the current values of the

program variables to their initial values , whereas the subgoal—assertion method relates the

current values to their final values. The intermittent-assertion technique can imitate both of

these methods because it can relate the values of the program variables at any two stages in the

computation.

3. WeII-tounded ordering method

The above constructions enabled us to mirror conventional partia l—correctness proofs using

intermittent assertions. In fact , we can also use the intermittent—assertion method to ex press
conventional tetmination proofs that use the well-founded ordering approach.

23

~dlI
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~—--. • -



~ 

Manna & Waldinger

Suppose that we have used the well-founded ordering approach to prove the termination of a
given program with respect to some input specification P(r0). Then we have found a
well—fou nded ordering >‘ over a set W , and for some set of designated labels L0, L1 L~, we

have found a set of invariant assertions 00(x0 x), 0 1(r0 x) Qh(xo x) and a set of ex pressions

E0(x0 x), E,(xo x), ..., Eh(x o x) for which we have proved the following conditions for every x0
and x:

(I) P(xo) — > 00(x0 x0)

(the input specification implies the initial invariant assertion),

(2~ ) 0
~
(xo x) and t~ (x)  => Q~(x 0 g~( x) ) for every basic path a from L1 to Lj

(the invariant assertion before the path implies the invariant assertion after),

~~~~~~ 
01(x0 r) —> E1(xo x) E W for each label L~

(the value of the ex pression belongs ~o W when control passes through L1), and

(4~) O~(x0 x) and ç(x) —> E1(x 0 x) > E1
.(
~c0 g~(x))

for ever y basic path a from L1 to Lj

(as control passes from L1 to L~. the value of the corresponding expression is reduced).

The above conditions establish the termination of the program. Conditions (I) and (2c~
) ensure

that each Q~(xo x) is indeed an invariant assertio n at L1: whenever control passes through L~,

assertion O~
(xo x) is true for the current value of x. Condition (3) then tells us that each time

control passes through L1, the value of the ex pression Ei(x o x) belongs to W.

Now , suppose that Conditions (I)-(4) are satisfied but the program does not terminate for some
input x0 satisf ying the input specification P(r0). Control then passes through an infinite
sequence of designated labels; the values of the corresponding expressions E~(x0 x) constitute an

infinite sequence of elements of W . Condition (4) then implies that this is a decreasing
sequence under the well-founded ordering, thereby contradicting the definition of a
well—founded set. Conditions (I)-(4) therefore suffice to establish the termination of the given
program.

It Is our task to transform a proof by the above method into an intermittent—assertion proof of
the termination of the program. The following theorem expresses the desired property

24

~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

-

• .. .~~~~~~~~~~ —-~~~~.- ~~~~ -— _ . .114

-- --~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~ -

Manna & Waidinge r

Theorem: if sometime x = x 0 and P(x0) at start
then sometime at f inish

Recall that “sometime at finish ” ex presses the termination of the program in the
intermittent—assertion notation. We can prove this theorem by establishing the following
lemma

Lemma: for ever y i , 0 � i ~ h
if sometime x = a and Q1(r 0 a) at L

then sometime at f inish .

To construct a proof that the lemma implies the theorem, we take i to be 0 in the lemma and
incorporate the given proof of Condition (1) into the intermittent-assertion proof of the
theorem.

To prove the lemma we use induction over the same well-founded ordering > that we
employed in the given termination proof. Suppose that

sometime x — a and Q~(x 0 a) at L1

for some designated label L1. We assume inductive ly that the lemma holds whenever x • a’ and

~~~~~~~~~~ 
a ’) at Li., where E1(x 0 a) > E1.(x 0 a ’). If i - b, termination has already occurred .

Otherwise , control must follow some path a from L6 to Lj~ i.e. t.~(a) is true. Thus

sometime x - g~(a) at L3

Because both Qj(xo a) and ç(a) hold, the proof of Condition (2) enables us to deduce

O~(x o g~( a)) . The proof of Condition (9) can be incorporated to yield

E,(xo a) E W and E~(x o g~( a ) )  E W

because both 01(x0 a) and O~(x ~ g,~( a)) are true. By Condition (4) then, we have

E1(x0 a) > Ej(x o g~ (a)) .

We can now use the induction hypothesis , wit h i’ - j  and a’ — g~(a), yielding the desired
conclusion

sometime at f in ish.

25

a 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  .-  —~~~~~----~~~~~~- • -


----~

=

~ - -~ ——--~ — ~~ - . -- -. ~~~ -~~~~~~~ . _ _

Manna & Waldlng.r

In this section we have shown how proofs by the conventional methods for establishing partial
correctness and termination of programs may be translated into Intermittent—assert ion proofs of
the same results. The translation process is purely mechanical and does not increase the
complexity of the proof. For this reason we can conclude that in employing the
intermittent—assertion method we have not lost any of the power of the existing methods.

Is it possible that a similar translation could be performed in the other direction? For
example, couldn’t we devise a procedure for translating any partial—correctness proof by the
intermittent—assertion method into a conventional invariant—assertion proof of comparable
complexity? We believe not. We have seen no invariant—assertion proof for the t ips program
that does not require consideration of the sum of the tips of all the elements in the stack. We
have seen no termination proof of the iterative Ackermann program by the conventional
method that employs such a simple we ll-founded ordering as the Intermittent—assertion proof.
Without formulating a precise notion of the “complexity ” of a proof , we cannot argue rigorously
that the Intermittent—assetion method is strictly more powerful than the conventional methods,
but our ex perience and our intuition lead us to maintain that this is so.

26

-~~~~~~~~
- *—‘,-- ~~ .~~

-.
~~~ ~~~~~~~~~~ ~~~~ ~~~~~- —~~~~~~~~~---



Manna & Waid inger

iv. App lication Valid ity of Transformations Tha t
• Eliminate Recur sion

In discussing the t ips program (Section II— 1) we remarked that part of the difficulty in proving.
the correctness of the program arose because the program was developed by introducing a stack
to remove the recursion from the original definition. It has been argued (e.g. Knuth [19 74],
Burstall and Darlington [l9 ’75), Gerhart [1975]) that , in such cases , we should first prove the
correctness of the original recursive program, and then develop the more efficient iterative
version by applying one or more transf ormations to the recursive one. These transformations
are intended to increase the efficiency of the program (at the possible expense of clarity) while
still maintaining its correctness.

If we were applying this methodology in producing our tips program, therefore, we would first
prove the correctness of the recurs ive version (a trivial task , since that version is completely
transparent); we would then develop the iterative tips program by systematically transform!ng
the recursive program -— removing its recursion and introducing a stack instead.
Consequently, the proof we presented in Section II would be completely unnecessary, since the
program would have been produced by applying to a correct recursive program a sequence of
transformations that are guaranteed not to change that program’s specifications.

To realize such a plan, however , we must be certain that the transformations we use are valid;
I.e. that they actually do produce a program equivalent to the original one. Given the same
input, the two programs must be guaranteed to return the same output. In other words, we

must be certain that bugs cannot be introduced during the transformation process.

In this section we will illustrate how intermittent assertions can be employed to establish the
validity of such transformat ions. We will present the intermittent—assertion proof of the
validit y of a transformation that removes a recursion by introducing a stack. This
transformation could have been used to produce our iterative tips program from its recursive
definition.

Suppose we have a recursive program of form

F(x) <— If p (x)
then fix )
else h(F(g~(x)) F(g 2 (x) ) ) .

(For simplicity, let us assume that p , f ,  g1, g2 and /i are defined for all arguments). If we know

t hat

27



Manna & Waldinger

( I) h(u h(v w)) — h(h (u v) w) for ever y u, v and w
(h is associative), and

(2) h(e u) — u for ever y u
(e Is a left Identity of /i),

then we can transform our program into an equivalent iterative program, of f o rm

Input(x)
start: stack ~— (x)

z 4 - e
more: if stack = 0

then f inish:  output(z)
else If p (h ead (s tac k))

then a ~ h (z f (h ead(s tac k) ) )
stack ~ z ai l (st ac k)
goto tnore

else f i r s t  ~ head (stac k)
stack ~- g~(f irsZ) . [ g 2 (f ir s l)  ‘ ta il(s ta ck)]
goto more

The validit y of this transformation is expressed by the following two theorems,

Theorem 1: if sometime x = a at start
and F(a) is defined
then somet ime z F(a) at f in ish .

and

Theorem 2: if sometime x = a at start
and the iterative computation terminates
then F(a) is defined.

Theorem I contains the condition that F(a) is defined (that the recursive computation of F with

input a will terminate). This condition is necessary for , otherwise , the iterative program will
not terminate, and therefore control will never reach fi nish at all. If we succeed in proving
Theoi~m I , we will have established that the iterative program terminates whenever the
original recursive program does, and returns the same output; in other words , the iterative
program computes an extension of the function computed by the recursive program, rather than
the exact same function. Theorem 2 shows that the recursive program halts whenever the

28

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _

• --- -- - • - . - - ---

Manna & Wa ldinger

iterative program does. Together , Theorems I and 2 imply that the recursive and iterative
programs are equivalent 1 he proof of Theorem I is analogous to the proof of the total
correctness of the t ip s program, it can be proved using the following lemma:

Lemma 1: ii sometime z — c arid s t ac ~. a • s at more
and F (a) is defined
then sometime a = h (c F (a)) and stack — s at more.

• To show that the lemma imp lies Theorem I, assume

sometime x - a at start

and that F (a) is defined. Then immediate ly control passes to more , so that

• sometime z — e and stack = (a) — a ’() at more.

-
By the lemma (taking c to be e and s to be 0], we have

sometime a — h(e F(a)) and stack — 0 at more.

But h(e F(a)) — F(a) by Property (2), that e is a left identity of h. Because stac k is 0, control
passes to f in ish , and we deduce

sometime a — F (a) at f inish ,

which is the desired conclusion of the theorem.

- - To prove the lemma, suppose

sometime a — c and stack — a~ s at n~orc ,

where F (a) is defined . The proof emp loys complete induction on a, over the ordering > induced

by the recursive computation. This is the ordering such that

d > d ’ ,

where F(d’) is called recursively during the com putation of F (d), and w here the computation of
F (d) terminates. In particular , if F(d) is defined, d > g 1(d) and d > g2(d). This ordering > is

•
I well—founded , because an infinite decreasin g sequence in the ordering would correspond to an

infinite, nonterminating computation of the recursive program, but the ordering has only been
defined for finite (terminating) com putations.

29

..~~~~
,. t — —

~
.•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

. •

~~~~~

•••

~~~~~~

_ _ _ _ _ _

Manna & WaldI ng er

We will assume inductively that the lemma holds whenever a — c’ and stack — a’. s°, where a > a’
in the ordering > Induced by the recursive computation, and show that it holds when z — c and
stack — a• s as well. We distinguish between two cases, depending on the truth of p(a).

Case p(a) Is true: Then F(a) - J(a), by the recursive definition of F. Because a is at the
head of the stack , the stack is not empty and p (head(stack)) is true; therefore we follow the then
branch of the program, so that

sometime z — h(c fla)) and stack • s at more.

• But fib) - F(a), so we have

sometime z — h(c F(a)) and stack — s at more ,

which is the desired conc lusion.

Case p (a) Is false: Here F(a) - h(F(g 1(a)) F(g2(a))) , by the recursive definition of F. Note
that F(a) Is defined; therefore F(gi(a)) and F(g 2 (a)) are also defined. Because stack is not empty
and p Viead(s tack)) is false, control follows the else branch of the loop body, so that

• sometime a — c and stack - g 1 ( a) . [ g 2 (a) . s ]  at more.

Recal l that a > g 1(a), because we have assumed that F(a) is defined; therefore we can apply the
induction hypothesis [taking c’ to be c , a’ to be g 1(a), and s’ to be g2(a) ’ s] to obtain

sometime a • h(c F (g 1(a))) and stack - g 2 (a) . s  at more.

Because a >‘ g2(a) , we can apply the induction hypothesis a second time [taking c’ to be
h(c F(g~(a))), a to be g2 (a) , and s’ - s] . We derive

sometime z — h(h(c F (g 1(a))) F( g2 (a) )) and stack — s at more.

By the associativity of h (Property (I)), and the recursive definition of F, we have

h(h(c F(g1(a))) F(g2(a))) — h(c h(F(g 1(a)) F(g2(a)))) — h(c F(a)).

Therefore we can conclude

sometime a — h(c F(a)) and stack — s at more ,

completing the proof of the lemma.

30

~ 

~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~LW~~ .—- —• -



_____ — - — ~~~~~--- -~~~~~~~~~~ - - - 
-‘-

~~~~ -— ~~~~~~~~~ -. -•--.

Manna & Waldlnger

So far we have only established Theorem I, that the function computed by the iterative
program is an extension of the function computed by the recursive program. We still need to
prove Theorem 2, that if the iterative program terminates, then the recursive program also
terminates. This proof depends on another lemma.

Lemma 2: if sometime a = c and stack - a• s at more
and the iterative computation terminates
then F(a) is defined.

Lemma 2 implies Theorem 2 directly, because the stack is initialized to (a) — a.Ø.

The proof of the lemma employs induction over the ordering > induced by the iterative
computation. in this ordering, (c 1 ~~

i) > (c~ ~~
2), where c 1 and c2 are successive values of the’

variable a at more, and s
~

and
~~2 are successive values of the stack at more, during a

terminating computation of the iterative program.

To prove the lemma, suppose that

- sometime a — c and stack — a.s at more ,

and that the iterative computation terminates. We assume Inductively that the lemma holds
whenever a — c’ and stack - a’.s ’ where (c a ’s) > (c ’ a’.?) in the ordering induced by the
computation, and show that F(a) is then defined.

We distin guish between two cases.

Case p (a) Is true: Here F(a) — fia) by the recursive program, and therefore F(a) is defined.

Case fr (a) Is false: Here F(a) — h(F (g 1(a)) F(g2(a))), by the recursive program. Since stack is
not empty and p (/z ead(s tack)) is false, the iterative computation follows the else branch , so that

- sometime a — c and stack — g~(a) ’t g2 (a) ’s) at more.

Because the computation was assumed to terminate , we have that

(c a ’s) > (c g 1(a) ’rg 2 (a) .s J),

and therefore, by our induction hypothesis, that

F(g 1(a)) is defined.

By Lemma I, we have that

3 ’

~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~ •~~ ~~• - 
———.--



• -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~ -~~ _ . ~~~~~~~_ • - -  ~~~~- •.- . -- • _

Manna & Wald lnger

sometime a — k (c F(gi(a))) and stack — g2 (a). s at more.

Again , by the induction hypothesis , we have that F(g2(a)) is defined. Because both F(g 1 ( a) )  and

F (g 2 (a)) are defined, and F(a) - h(F(g 1(a)) F (g 2 (a)) ) ,  we can conclude that F(a) is defined.

We have just shown the validity of the transformation that was actually used to produce the
iterative tips program in Section 11-I. As in that section, we could have used the conventional
invariant-assertion technique in the proof of Theorem 1. However, although we could employ

the standard ~~ notation to denote repeated applications of the + operation in the t ips
• invariant assertion, we would have had to invent a new notation to denote repeated application

of the function h in the invariant assertion for the iterative program here.

In the next section we will discuss an entirely different application of the lntermittent—assert ion
method.

a

32

p_
~_~_T_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Manna & Waldin ger

V. App lication Corr ectness of Continuo usly Operating
Programs

Conventionally, in proving the correc tness of a program, we descri be its expected behavior in
terms of an output specification , which is intended to hold when the program terminates. Some
programs, such as operating systems , airline—reservation systems and management information
systems , however , are never ex pected to terminate. Such programs will be said to be
continuousl y operating ( see , for example , Francez and Pneuli (19 77)). The correctness of
continuously operating programs therefore cannot be expressed by output specifications , but
rather by their intended behavior while running.

Furthermore , we conventionally describe the internal workings of a program with an invariant
assertion , which is intended to hold ever y time control passes through the corresponding point.
The description of the work ings of a continuously operating program, however, often involves
a relationshi p that some event A is inevitably followed by some other event B. Such a
relationship connects two different states of the program and, generally, cannot be phrased as
an invariant assertion.

In other words , the standard tools for proving the correctn ess of terminating programs ,
input—output specifications and invariant assertions , are not appropriate for continuously
operating programs. The intermittent-assertio n method provides a natural complement here,
both as a means for specifying the internal and external behavior of these programs, and as a
technique for proving the specif ications correct.

We will use one very simple exam ple, an imaginar y sequential operating system, to illustrate
this point:

more: read(requests)
setup : If requests — 0

then goto more
else (Job requests ) ~- (h e a d (re quests ) tail (r e quests))

execute: process (J ob)
goto setup.

At each iteration this program reads a list , requests , of jobs to be processed . If requests is
empty, the program will read a new list, and wi ll repeat this operation indefinitely until a
nonempt y request list is read. The system will then process the jobs one by one; when they are
all processed, the system will again attempt to read a request list.

What we wish to estab lish about this program is that if a job j  is read into the request list , it

33

• - ‘
~~~~~~~ ~~~~~~~ 

-

L •.~~~~~
-
~~~~~~~ ----~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . • •  • - • - . . • -



Manna & Waldin ger

will eventually be processed . Mthough this claim is not representable as an input—output
specification, it is directly expressed in the following

Theorem: if sometime j € re quests at setup
then sometime job — j at execute.

Here ,j € requests means that j  belongs to the list of current requests.

To prove the theorem, assume that

sometime j  € requests at setup.

Then requests is not empty and is of the for m

uj ~3,

where u and ~3 are the sublists of jobs occuring before and after J, respectively, in the request
list. Our proof will be by complete induction on the structure of a: we assume the theorem
holds whenever requests is of form

a’j ~3,

for any sublist a’ of a. The proof distinguishes between two cases

Case a — 0: Then j — head(req uesls) . Since requests — 0~ we reach execute with
jo b — ~,ead(r e quests) — j , satisfyin g the conclusion of the theorem.

Case a 0 0: Then a — head (cz) . tail (a). Because again reque st s — 0, we process job — head(ce),
and return to setu p with requests reset to tail (ce) j ~~ . Since ta il (u) is a sublist of a, we can

conclude from our inductive assum ption that

sometime job — j  at execute ,

~~
- we had hoped.

This program Is very simple, but it may serve to suggest how the intermittent—assertion method
can be applied to the more realistic examples.

Note that when we make a statement of form

if sometime P at L1
then sometime 0 at L2,

34

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~4a - I . s - ~~~~


_________ —

Manna & Waldinger

we do not necessari ly imply that condition U is satisfied at L2 after condition P is satisfied at
L~, in tact , condition U could hold before condition P. Thus, in the above example, we should
be pet tect ly content if some especially fast operating system were able to process the jot before
it was submitted in fact , the proof techniques that we have used in this paper will only allow
us to prove an implication of the above form if U holds at L2 after P holds at Li. Additional
techniques would be necessary if we wanted to prove such an implication if 0 actuall y holds
before P

ihr3ughout this paper , in proving an imp lication of the above form, we have tacitl y assumrd
• that conditions P and U are satisfied at d:fferent stages of the same computation. It is possible

to relax this assumption and relate different computat ions by extending our notation
appropriately. We believe one could then apply the intermittent—assertion method to prove
properties of nondeterministic and concurrent programs as well.

-J

35

t___. ~~ t --
L~~~ ~~~ -i2 _ _ _ -

Manna & Waldinger

VI. Conclusions

The intermittent—assertion method not only serves as a valuable tool, but also provides a
general framework encompassing a wide variet y of techniques for the logical anal ysis of
programs. Diverse method s for establishing partial correctness , termination , and equivalence fit

easi ly within this framework. Furthermore , some proofs , natura lly expressed with intermittent
assertions , are not as easily conveyed by the more conventional methods.

It has yet to be determined which phases of the intermittent—assertion proof process will be
accessible to implementation in verification systems. If the lemmas and the well—founded
orderings for t he induction are provided by the programmer , to construct the remainder of the
proof appears to be fairly mechanica l. On the other hand, to find the appropriate lemmas and
the corres ponding orderings may require some ingenuity. We believe that the
intermittent—assertion method w ifl have practical impact because it allows us to Incorporate our
intuitive understanding about the wa y a program works directly into a proof of its correctness .

Acknowle dgements

We would like to thank Rod Burstall and Nachum Dershowitz for man y helpful discussions
related to this work. We would also like to thank Ed Ashcrof t , Edsger Dij kstra and Jim King
for their careful critical reading of the manuscr ipt , and their many suggested revisions.

VII. References

Ashcroft , E.A. [Nov. 1976), Interm it tent—assert ion proofs in LUCiD , Research Report .
Universit y of Waterloo , Waterloo , Canada.

Burstall, R.M. [Aug. 1974), Program proving as hand simulation with a little
induction , Information Processing 19 74, North-Holland Publishi~ig
Company, A msterdam, pp. 308-312.

Bursta ll, R.M. and Darlington , J. [A pr. 1975), Some transformations for developing
recursive p ro grams , Proceedings of Internat ional Conference on Reliable
Software , Los An geles, Ca., pp. 465-472.

Floyd, R.W. [196 7), Assigning meaning to programs , Proceedings of Symposium in

36

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- •



Manna & Wald inger

App lied Mathematics , V. 19 (J.T. Schwartz , ed), A merican Mathematical
Society, pp. 19-32.

Francez , N. and Pnueli , A. [19 77), A proof method for  cyclic programs , Ac t a
Informatica (to appear).

Gerh art , S.L. [Jan. 1975], Correctn ess—preserving program transfo rmat ions ,
• Proceedings of the Second Symposium on Princi ples of Programming

Languages, Palo Alto , Ca., pp. 54-65 .

Hoare, C A R .  [Oct. 1969), An axio matic basis of computer programming, CACM, Vol.
12, No 10, pp. 576-580 , 583.

Katz , S.M. and Manna , Z. [Dec. 1975], A closer look at termination , Acta Informatica,
Vol. 5, pp. 333- 352.

Knuth, D.E. [19681, The Art of Compute r Pro g ra mming,  Volume I:  Fundamental
Algo rithms , Addison-Wesley Publishers , Reading, Mass.

Knuth , D.E. [Dec. 19 74), Structured programming with got 0 statements , Computing
Surveys , Vol. 6, No. 4 , pp. 26 1-30 1.

London, R.L. [April 1975] , A view of program verification , Proceedings of the
International Conference on Reliable Software , Los An geles, Ca., pp.
534—5 4 5 .

Manna , Z. [June 1971), Mathematical  (itcor y of pa rtial correctness , Journal of
Computer and System Sciences , Vol. 5, No. 3, pp. 239-253.

Manna, Z. [19 74), Mathematical Theory of Computation, McGraw-Hill Book
Company, New York , N.Y.

Morris, J.H. and Wegbreit , 8. [Feb. 1976), Subgoal induction , Memo, Xerox Research
Center , Palo Alto , Ca.

Pratt , V .R. [Oct. 1976), Semantica! considerations on Fl oyd—Hoare logic , Proceedings
of the 17th Symposium on Foundations of Computer Science, Houston,
Texas , pp. 109-12 1.

Schwarz , J. [Ju ly 1976], E vent— b ased reaso n ing — A system for  proving correct
termination of progra ms , Proceed ings of the Third internat iona l Colloquium
on Automata , Languages and Programming, Edinburgh, Scotland , pp.
l31 l46.

• 
I

~~~Ul . -- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ... .


•

—.•-.,--- - --.--,-—--.--.—.- —

~

-..----.-—-—.-.—,

~

—.,. —. ..- -.

~

--.-.- — .— .—-- .-—-..--.- ... — ..-.--.. —•.

~

---- .-. -—.- - .
- .——--— —.-- -.———

~~~~~~
-.-.— —— 

~~~~—

Manna & Wald lnger

Topor, R.W. [1977), 4 simple proof of the Sc/io rr- Wa ite garbage collection al go rithm ,
Acta Informatica (to appear).

Wang, A. (1976), An axiomatic basis for proving total correctness of got o—pro gr a ms ,
BIT , Vol. 16, pp. 88-102.

38

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 


F- - .

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECURI1’ Y CLAS S IF ICATION OF T HiS PAGE (Wh en Data EnI.r•d) 
_______________________________

REPORT DO ~EHTA~’ION P•W~E . 
—

. 

,.4EFORE COMPLETLNG FORM 
1I .  R E P O R T  NUMBER ~~ . gov T ACC~~5$iON NO. 3. çIPIE_NJ~~~CArALQa I~M~~F~~

STAN—cS--76—558, M1~1—281 1 / , — 

- 

. ~ .. 
— - J .. ~~~

4~~ T IT L~~jf~,J ~~~~t i’ I. - • 
S. TYPE OF’ KLPORI 6 P~ .RIOO COVEREO

IS ‘SCf~~TIME ’ .S~~~ rn4ES &~‘ri~~ THPIN I~LWAYS’~ ~~ci~nicai -

Interniittent assertions in proving program - 

6. p~~~ roRM NG ORG. REPORT NUMBER

~~rrecthess - - - - - -  - -- ----- - -

S. CONTRACT OR GRANT NUM8E~~ .J

Zohar/Manna - Richard/Waldmger
- - -  

ARPA MDA 9Q3-’76-C-C206
9. PERFORMING ORGANIZA T ION NAME A ND A DDRESS 10. PROG RAM ELEMENT , PROJ ECT . T A S K

.Artificia]. Intelligence IaI~oratory 
* 

A REA 4 wORK UNIT NUMBERS

Stanford ~~~~~~~~ ** NR 049—378 A PA dStanford, California 94305 R Or er 2 -*

I I .  CONT RO L L I NG O F FICE  NAME AND ADDRESS J . f t~EQ&t.~~~TE

Mr. - Maxvin Denicoff , Program Director /7 -

, 

~pr~~ 1977 -

Information Systems, Code 437, (~ R . . 
• 

~~~~~~~~~ OF PAGES , /
800 No. Quincy, 2~r1ington, Virginia , 22217 38

14. MONITORING AGE NCY NAME B ADDRESS(I1 dill .rwl from Controiliná Ollic.) IS. SECURiTY CLASS. (of Ala r.pod)

Philip Surra, ~~~ Representative 15Durand .lieronautics Building, Boom 165
Stanford University, Stanford, Calif. 94305 IS~~ ~~~~ k~~~~~~

iCATI ON/O OWNGR AD ING

16. DiSTR IBUTION STATEMENT (of tAt . Report)

Releasable without limitations on dissemination.

17. DiSTRIBU T iON STATEMENT (of the abit ract .01. ,.d in Block 20, II different from Report)
ç’~~

IS. SUPPLEM EN T A R Y NOTE S
- - - -.— .— . .--- .--— . -

IS. KEY WORDS (Coflhlnue on reverse aId. II nec.asar,’ end id.ntliy by block number)
-

20. A B S T R A C T (Conhlnu. on r. Vera. aid. if n.c....l1 and ident i fy by block numb.r)

This paper explores a technique for provipg the correctness and term.ination
of programs simultaneously. This approach , which we call the intermitterit-~sser-
tiori method, involves docurrenting the program with assertions that must be true
at some time when control is passing through the corresponding point, but that
need not be true every tine. The method, introduced by Burs tall , prom ises to
provide a valuable ccxplerrent to the m ore conventional methods.

-We first introduce the int armi.tterl.t=as’~.erH c,rt ~~ I~bryz1 t~i th ,i nl~ rl~~ r of ‘

DD ~~~~ 1473 EDITION OF I NOV 65 IS OBSOLET E
.

S/N 0 i 0 2 - 0 I4 660 1 - _________________________________

SECU R ITY CLASSI F ICATIO N OF THIS P A G E (WRen Del. F ’ t V d)

Ii i
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ •

. 4



— - . - . - - - — - - ----

..LLII ’ i I TY  CLASSIF ICATION OF T~i iS PAGE(W h en Oaf. bnl.e .d)

2O~~e~xamnples of corre~....ness and terirunatkat pro~fs. S( r ,~ of these proofs
markedly sinpier than their conventional a~wnterparts. On the other hand, we
s1~~ that a proof of correctness or termination by any of the conventional
techniques can be rephrased ci rectly as a pr~x f  ‘i-~ir.~ i- tcr—ittcnt r3sert!Onn.Z
Finally, we s~~~ IKiw the intermittent-assertion uethod can be applied to
prove the validity of program transformations and the correctness of continu-
ously operating programs.

4

UN~I~SSIFIED ‘

SECURITY CLASSIFICATION OF THIS PAGE(W?l en Data Ent.r.d)

I~& ~~ 
4—~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.

~~~~~~~~~~~~~ - .~~~~~


